Monthly Archives: November 2021

Pharmaceutical Research

Top 5 Pharmaceutical Research Trends to Watch Out for in 2022

Posted on November 25, 2021

The pharmaceutical sector is undergoing a major transformation. The sector, which has been sluggish to accept technology in the past, is currently undergoing a fast transformation as a result of the development of many technologies. Artificial intelligence (AI), additive manufacturing, Blockchain, and other Industry 4.0 technologies are among the most notable Pharma industry developments. More investments, the expansion of technological startups, the expiration of numerous major patents, as well as increased inter-organizational partnerships and a favorable regulatory environment, are all encouraging innovation in the pharmaceutical business.

Every year, new trends are bringing a massive change in the Pharma research industry. We now will look into the top 5 Pharma research trends in 2022.

Continue reading

Data Pipelines

Everything You Need to Know About Data Pipelines

Posted on November 18, 2021

For every single enterprise trying to generate value from the compiled data, it is important to have proper management of information flow from the source to the destination, like a data warehouse. This task proves to be an intricate and complicated one since there are so many things that could go wrong. Errors could propagate along the pathway of the source and destination or there might be duplication or corruption of data. With an increase in the data volume and the sources, the process gets even more complex. This is where data pipelines can help. With data pipeline automation, the flow of information can be simplified by eliminating all the manual steps in the process.

What Exactly Does Data Pipeline Architecture Mean?

A data pipeline architecture can be defined as a particular arrangement of objects that will regulate, extract, and route the data to various relevant systems to gain valuable insights. While pipelines of big data and ETL tend to extract the data from the source and transform it for loading it into the system, the data pipeline has a much more simplified process. It embraces all the values of the big data and ETL pipelines into one singular subset. One of the main differences between data pipeline and ETL is that the former tend to use proper processing tools to transport the data from a particular system to another one without the transformation taking place.

Continue reading